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INTRODUCTION 

Researchers and software developers are currently develop- 
ing the next generation of CAD software for the Architec- 
ture/Engineering/Construction (AEC) industry. In several 
initiatives to develop new software, the key strategy has been 
to enumerate, classify and describe the components of a 
building. Researchers then attempt to build a consensus 
upon the definitions in the expectation of sharing infonna- 
tion about a building by using the agreed-upon definitions. 
However, rather than a consensus upon components, there 
may be advantages to building a consensus upon an under- 
standing of the design process. Comprehensive building 
design support software could be based upon a model of the 
designer's cognitive processes instead of a simulation of the 
material world. 

A prototype software system, the Semantic Modeling 
Extension (SME), has demonstrated that a cognitive model 
of design is a viable alternative foundation for the next 
generation of CAD software. SME has proved to be usable 
by designers in solving a controlled design problem with a 
restricted set of tasks. 

THE NEXT GENERATION OF CAD SOFTWARE 

Researchers and developers envision a next generation of 
CAD software for the AEC industry that is comprehensive in 
scope yet allows for exchange of design information among 
the software products of many vendors. 

Comprehensive 

While the use of computers has become widespread in the 
AEC industry, many of the expected benefits of computer- 
ization have been unrealized. Much of the blame for 
reduced benefits has been attributed to a lack of integration 
of information and software (Hansen, Johnson and Tatum 
1990). The large number of current software products 
provide poor abilities to share building descriptions among 
participants, across stages, and between projects. Ineffi- 
ciencies that result from the difficulty of sharing informa- 
tion manifest themselves as increased time, increased cost, 

and increased error rates. 
It has been widely suggested that computer systems could 

overcome this obstacle through greater software and data 
integration. Rather than being special-purpose, stand-alone 
systems, future CAD systems could simultaneously or auto- 
matically collect information and perform colnputations that 
are useful to many participants. In this way, a future CAD 
system could be comprehensive in addressing the needs of 
the industry. 

Interoperable 

A second major obstacle that current research and develop- 
ment is addressing relates to the process of developing and 
delivering CAD software. The AEC industry may be char- 
acterized as fragmented into many small business entities, 
each of which has individualistic practices. Although the 
fragmentation probably leads to inefficiencies and disadvan- 
tages, it may also lead to exceptional responsiveness and 
creativity. It may not be possible or desirable to impose a 
monolithic software solution upon the industry even if it is 
comprehensive in addressing industry information needs. 
Such a solution may be too expensive for the average small 
firm, require too many years for development and require 
conformance to a rigid design method. 

One alternative to a monolithic software solution is 
"interoperable" software. Interoperable software consists of 
modules that are provided by diverse software vendors but 
that nevertheless are capable of sharing and preserving 
information. A blanket organization for the entire industry 
would establish and enforce the enabling standards. The 
concept has been clearly articulated by another author 
(Eastman 1992). 

These two objectives for future CAD systems are comple- 
mentary. Together, they are a vision of a comprehensive, 
interoperable CAD system. The system can address the 
information needs of many participants at many stages in the 
design, construction and operation process. By allowing the 
end-users to mix and match modules, the system responds to 
the personal preferences of the individuals who use it and the 
particular needs of a project for which it is used. The 
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incorporation of standards for information representation 
will assure that the building description may evolve during 
a project and may be exchanged among participants who use 
other software. Re-input of information, loss of information 
and redundancy of information will be reduced or eliminated 
by the common representation. All participants, including 
building owners, designers, constructors and occupants, will 
profit. 

TWO FOUNDATIONS 

Creation of comprehensive, interoperable CAD software 
will require many years of effort. A key task in that effort is 
to establish what are the fundamental information units and 
operations upon which the system may be based. These 
fundamental concepts serve as the "atoms" from which 
individual software modules may be constructed. Using the 
terminology of object-oriented programming, the task may 
be thought of as answering the basic question "What are the 
objects?" 

Answering the question entails considerable risk. A 
widely adoptednew CAD system could lead to changes in the 
industry on a seismic scale. If the system guides the design 
process into a particular direction, it could lead to an 
improvement in overall design quality or a decline. A new, 
comprehensive system could lead to a shift in authority and 
responsibility for a building project to those who use the 
system, dramatically changing the roles ofprofessionals. Of 
particular concern is that the adoption of standard building 
representations introduces a risk that the designer's opportu- 
nities for creative expression and invention will be reduced. 
This concern seems most relevant at the early, conceptual 
stages of a design project. The choices to be made in the near 
termmay have important consequences to the future practice 
of architecture. 

In the spirit of facilitating a wise answer to the question, 
my research has postulated an alternative foundation for 
comprehensive, interoperable CAD systems. While much 
current research has adopted an approach that emphasizes 
the components of the building, I have explored an approach 
that derives from a cognitive model of the design process. 

Component approach 
Much research into how CAD can be made more comprehen- 
sive has employed what has been called the "component 
approach" (Harfinann and Chen 1990). The basic concept is 
that a model of the physical building is the common. shared 
denominator of all of the actions undertaken by participants 
in the design, construction and operation of a building. 
Research using this approach has emphasized cataloguing 
the physical and spatial parts of a building. Software that 
uses the component approach will be interoperable in that it 
can exchange standard part definitions. Each part definition 
will include all necessary descriptive data and behavior. Thc 
part models may be assembled into a building model that will 
express the behavior of the building. 

The STEP initiative is an international effort to develop 
a standard for the exchange ofproduct data. Within the STEP 
initiative is a focus group for the AEC industry. The 
information classifications suggested by STEP have focused 
upon geometry description and physical and spatial compo- 
nents (IS0 1993). 

The Industry Alliance for Interoperability (IAI) is a 
consortium of companies in the AEC industry that is devel- 
oping a comprehensive, interoperable CAD system architec- 
ture (Industry Alliance for Interoperability 1996). The IAI 
is working to create Industry Foundation Classes (IFC) and 
build a consensus for them. The IFC will focus upon 
standardization of data formats and access to the data. 
Initially. they will not address standardization of behavior or 
performance of building components but only description of 
component form. The class hierarchies envisioned are 
mostly classifications of components. 

Cognitive approach 

In contrast, my research suggests that an underlying model 
of the design process is an appropriate foundation for com- 
prehensive. interoperable CAD software. In pursuing this 
theme, I have employed a basic argument from artificial 
intelligence that software iinplementations may provide 
evidence in support of models of human cognition (Gardner 
1985, 140). The model of the design process that I have used 
is illustrated in Figure 1. 

The starting point in this model is the analysis-synthesis- 
evaluation cycle that is often cited by design methods reports 
(Asimow 1962). Analysis, in Asimow's model, is the 
determination and documentation of needs for the project. 
Synthesis is the invention of a potential solution to those 
needs. Evaluation is the determination of whether a satisfac- 
tory soiution has been achieved. My research has focused 
upon the evaluation step in the design process. 

Design evaluation appears to involve three kinds of 
conceptual objects: 

forms, that express the geometry and materials of the 
design solution; 
functions, that express the design requirements; and 
behaviors that express the performance of the design in 
the anticipated use of the design artifact. 
These definitions have been elaborated in a previous 

paper and are similar to those used by other researchers 
(Clayton, Fischer and Kunz 1995; Gero 1990). 

Evaluation involves predicting behavior values based 
upon the design form and then assessing the satisfaction of 
functions with respect to the behaviors. If the assessment is 
that the knctions have been satisfied, then the designer may 
proceed to either a greater level of detail or to documentation 
and completion of the project. If the assessment is that the 
functions are unsatisfied. then the designer must return to the 
analysis step to check the functions and the synthesis step to 
generate a new form. 

Designers by training and tradition typically cluster par- 
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Figure 1,  Model of design evaluation process. The synthesis step produces a description of form. During evaluation, the form must be 
interpreted to associate function with the form for each issue. For each function, behaviors must be predicted using the form. Finally, 
the functions are assessed by examining the behaviors. The result is a determination of whether the potential solution is successful. 

ticular functions into what I call an issue. For example, 
structural engineering clusters various functions for load 
resistance and limitation of deflection into a gravity load 
issue that is often examined independently of other design 
issues. To accommodate the decomposition of the design 
synthesis into the issue-based models necessary for evalua- 
tion, a designer must perform an interpret activity before 
predicting and assessing. I refer to an interpreted entity in the 
design as a feature. 

Of course, this model of the design process is incomplete 
and lacks detail. However, it has proven adequate for 
guiding the implementation of software. Thus far in the 
research, this model of the evaluation process appears to be 
general. The reification of the concepts of form, function and 
behavior in the SME implementation are described below. 

Comparison 

Both a component approach and a cognitive approach help 
one arrive at plausible atoms for the creation of comprehen- 
sive, interoperable design software. One expects that the 
kinds of software that would result from the two approaches 
would be very different and could thus lead to very different 
scenarios of future architectural practice. Choice of a 
research and development approach should be guided by a 
projection of the implications of the alternative approaches. 

A major stumbling block in the component-based ap- 
proach is the necessity of achieving broad agreement upon 
the definition and classification of thousands or millions of 
components. New products that can serve as components in 
a building are always being invented and would need to be 
added to the catalogue before they could be used in the 
system. Sophisticated retrieval tools would be necessary to 
search the catalogue to find a component that meets the 
particular needs of the design situation. The cognitive 
approach used in my research has sidestepped a requirement 
for such a catalogue. A catalogue of hnctions and behaviors 
would still be required. However, it might be smaller than 
a catalogue of components. The concept of interpretations 

further reduces the size of the needed catalogue by encapsu- 
lating many functions and behaviors into coherent issue- 
based units and hiding the functions and behaviors from the 
end-user. 

The component approach also runs a risk of requiring too 
much commitment too soon in the design process. When 
inserting a component, a designer may be declaring at- 
tributes by default without carefully considering them. For 
example, a designer may wish to state that a wall is to be 
masonry but may be reluctant to choose between concrete 
block and brick. The cognitive model described above 
accounts for the incremental addition and refinement of 
information through adding interpretations of the design 
solution. 

A third limitation of the component approach is that a 
component library can never be large enough to accommo- 
date innovative design. Almost by definition, innovative 
design will use existing components in new ways or invent 
new components and materials. The research that uses a 
component approach has not successfully addressed how an 
end-user such as an architect or engineer or building owner 
could invent new components or find new ways to use 
existing components. In contrast, the cognitive approach 
described above explicitly accounts for the invention of new 
components. A designer may combine forms, functions and 
behaviors in a new way. Some kinds of innovation may still 
fall outside the boundaries of the cognitive model described 
in this paper. 

For these reasons, the cognitive model described in this 
section is attractive for further development. The first ques- 
tion in developing it further was simply "Is this feasible?" 

SME IMPLEMENTATION 

The Semantic Modeling Extension (SME) is intended to test 
whether the model of the design evaluation process that is 
described in the preceding section can be implemented as 
software and whether that software can be used by designers 
in solving a design problem. 
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System architecture 

The SME prototype couples a conventional CAD system, 
AutoCAD(tm), with knowledge-based evaluation tools. 
Simple routines for extracting data from the CAD model and 
exchanging it with the evaluation modules were written in 
AutoLISP(tm) and C. Four evaluation modules were written 
in Kappa(tm) using object-oriented and rule-based reason- 
ing techniques. Core functionality allows a user to dynami- 
cally add and remove evaluation tools, interpret entities in 
the CAD model and initiate design evaluations. The core 
functionality was also written with Kappa. The system 
architecture is shown in Figure 2. 

Base classes of the SME core 

Seven base classes provide the system interface to all of the 
evaluation modules in SME. They are reifications of the 
concepts used in the model of design evaluation that was 
described earlier. 

Form. In SME, this class is prilnariiy a wrapper around 
an AutoCAD entity. It provides an interface between the 
AutoCAD entity and the rest of SME to support queries 
from SME about geometry. It also provides a represen- 
tation of the material of the geometric or graphic object. 
Function. Requirements on the design solution are 
represented as distinct Function objects. Each Function 
class provides an assess! method that must determine 
whether the requirement has been satisfied by the design 
solution. The assess! methods employ one or more 
Behavior objects in that determination. 
Behavior. The performance of the design solution is 
represented by Behavior objects. The Behavior classes 
must provide a predict! method that is responsible for 
generating a value for the Behavior. In most cases, the 
value is generated by deriving quantities from the Form 
objects. 
Feature. A Feature object bundles particular Functions 

AutoCAD 

r 

Figure 2, Semantic Modeling Extension system architecture. The 
co~nponents shown with rounded rectangles were programmed 
with Kappa. The large arrow symbolizes that the link between 
these components is instituted permanently for a session with 
SME. The small arrows indicate links that may dynamically be 
created or severed during a session to accommodate changing 
needs for evaluations. 

with a particular Form from within a particular Interpre- 
tation. When the user interprets a CAD entity, a Feature 
instance is created. The Feature knows what Functions 
are implied by its creation. 
Interpretation. An evaluation issue, such as egress, 
construction cost, spatial requirements or energy con- 
sumption, is represented in SME by an Interpretation 
object. The Interpretation object manages the list of 
Feature instances that are produced by interpreting the 
design. It provides an interpret! method that presents a list 
of Feature classes from which the user may pick. The 
Interpretation object must also provide an evaluate! method 
that initiates the prediction of Behavior values and the 
assessment of Function satisfaction. 
I~zterpretation Manager. SME employs an Interpretation 
Manager to allow the user to load and unload modules and 
focus attention upon a single Interpretation at a time. 
Virtual Component. The Virtual Component class pro- 
vides for interoperability among the evaluation modules. 
It assures that Form instances, Function instances and 
Behavior instances are shared to the highest degree that 
is possible. 

Evaluation modules 

Each evaluation tool is written using the base classes and is 
encapsulated as an instance of a subclass of the Interpretation 
class. An Interpretation Manager object in the SME core is 
responsible for loading and unloading evaluation modules 
and also dispatching high level commands to the individual 
Interpretation instances. 

The evaluation tools are implemented to employ a com- 
mon user interface. They share common dialog boxes for 
creating features, interpreting CAD entities and inspecting 
the results of an evaluation. 

The reasoning behind the evaluations is implemented in 
the four evaluation modules using prediction of Behaviors 
and assessment of Functions. Having set a current Interpre- 
tation with the Interpretation Manager, the user may issue a 
cormnand from the core interface to interpret a CAD entity. 
The current Interpretation provides the user with a list of 
Feature classes. When the user selects a Feature class, the 
system instantiates Functions that are relevant to the particu- 
lar Interpretation. When the user initiates an evaluation, the 
SME core dispatches a message to the Interpretation in- 
stances to evaluate the design. Each Interpretation sends 
messages to its Functions to assess themselves. The Func- 
tions each ask Behavior instances to predict themselves to 
provide the information needed for assessment. The results 
of all of the Function assessments are collected by the 
Interpretation instances for reporting to the user. 

Writing the code for the four evaluation tools was rela- 
tively easy. Using object-oriented programming, it was 
straightforward to reuse code from higher in the class 
hierarchies. The basic messages defined by the core classes 
were sufficient for achieving system interfaces for all of the 
evaluation modules. More detail of the implementation is 
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provided in other papers (Clayton, Kunz, Fischer and Teicholz 
1994; Clayton, Kunz and Fischer 1996). The implementa- 
tion of the evaluation tools is evidence that the cognitive 
model is correct. useful in understanding evaluation and 
useful in constructing software to support design. 

Interoperability using Virtual Components 

In the initial versions of SME, the dominant information 
shared among the evaluation modules was the CAD graphic 
representation, which corresponds most clearly to the form 
of the design. However, the use of Function and Behavior 
classes suggested an opportunity to share the information 
expressed in these objects as well. The concept of Virtual 
Components was developed to provide a mechanism for 
interoperability. 

When the user interprets a CAD entity for the first time, 
the SME core instantiates a Virtual Component. Each 
interpreted entity has one and only one Virtual Component 
instance. The Virtual Component acts as a broker for 
Function and Behavior instances. As the same CAD entity 
may be interpreted in different evaluation modules, the 
Virtual Component collects references to Functions and 
Behaviors and share them among the evaluation tools. For 
example, a design object that represents a room may be 
interpreted as a Laboratory feature in a spatial evaluation 
module and as a Hospital Room in an egress evaluation 
module. Both features set minimums for the area of the 
room, represented as Functions. A shared Behavior that 
expresses floor area is used to assess the two Functions. 

A Virtual Component has no predefined Form, Function 
or Behavior. The Fonn, Function and Behavior are incre- 
mentally collected during the user's actions of drawing the 
design, interpreting it, and evaluating it. The collection of 
the Form, Function and Behavior is performed by the system 
outside of the attention of the user, who may focus entirely 
upon the design process. Once all evaluations of the design 
object are completed, the Virtual Components fully specify 
the design objects. Because of this ability to collect a design 
specification at run-time from the actions of the designer in 
evaluating the design, Virtual Components are particularly 
suited for design support software directed toward the early 
stages of design and toward innovative design. 

The operations provided by SME for interpreting the 
design, predicting behaviors, assessing functions and col- 
lecting form, function and behavior into Virtual Components 
appear to be extensible beyond the four evaluation modules 
and the limited design problem addressed by the SME 
prototype. Without using a typical product modeling classi- 
fication of components, SME collects information into a 
comprehensive representation of a building. Consequently. 
I refer to building model in SME as a virtualproduct model. 

SME TESTS 

Usability tests of the SME implementation have demon- 
strated that the software is easy to learn. easy to use and that 

it has clear advantages over manual methods for accomplish- 
ing design tasks. The test is described in more detail in 
another publication (Clayton, Fischer, Teicholz and Kunz 
1996). 

Outline of tests 

The software test employed techniques derived from soft- 
ware usability testing. A building design problem was 
devised that could be solved using the SME prototype or 
using manual methods. A within-subjects series oftrials was 
used in which some participants first used the computer 
techniques and some users first used the manual techniques. 
The participants received about one hour of training for each 
technique. A time limit of two hours per trial limited the 
comnitlnent required of participants and placed a time 
pressure upon the participants. Measurements were taken of 
time expended to reach various milestones and of accuracy. 

Results 

The results show that: 
1. Participants learned the software quickly, allowing them 

to complete the trials with only a small amount of training. 
2. The manual method and the software supported method 

employed a similar sequence of actions derived from the 
cognitive model. The participants accepted the sequence 
of actions and used it effectively with either the manual 
method or the computer method. 

3. The manual method allowed somewhat more rapid per- 
formance. This may partly be due to limited robustness 
of the software and greater familiarity among the partici- 
pants with the manual methods. 

4. The software-supported method was significantly more 
accurate than the manual method. 
The number ofparticipants was small (only five) and only 

narrowly representative of design professionals. However, 
the trials suggest that software that is based on the cognitive 
model could improve designers' performance, especially in 
the area of improved accuracy. They also provide evidence 
that the cognitive model is reasonably accurate in defining 
the evaluation design process. 

CONCLUSIONS 

The SME prototype clearly demonstrates that CAD software 
can be developed based upon a cognitive model of the design 
evaluation process. It also shows that interoperability may 
be achieved that shares forms, functions and behaviors rather 
than components. The trials with the software suggest that 
designers can quickly learn to use such software and can 
perform competitively with the software to accomplish 
design tasks. The experience suggests that a common user 
interface based upon a formalized design method may be an 
important part of future comprehensive, interoperable CAD 
systems. 

A theoretical argument suggests that comprehensive, 
interoperable CAD software that is based upon the cognitive 
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model o f  interpreting, predicting and assessing could have 
advantages over software that is based upon component 
representations. Software that employs "design process- 
based interoperability" m a y  provide more flexibility and 
support for creative design than software that employs 
"component-based interoperability." 
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